Give this problem series a try 3256. Maximum Value Sum by Placing Three Rooks I, 3257. Maximum Value Sum by Placing Three Rooks II.
Problem Statement
You are given a m x n
2D array board representing a chessboard, where board[i][j]
represents the value of the cell (i, j)
.
Rooks in the same row or column attack each other. You need to place three rooks on the chessboard such that the rooks do not attack each other.
Return the maximum sum of the cell values on which the rooks are placed.
Example 1:
-
Input:
board = [[-3,1,1,1],[-3,1,-3,1],[-3,2,1,1]]
-
Output:
4
-
Explanation: We can place the rooks in the cells
(0, 2)
,(1, 3)
, and(2, 1)
for a sum of1 + 1 + 2 = 4
.
Example 2:
-
Input:
board = [[1,2,3],[4,5,6],[7,8,9]]
-
Output:
15
-
Explanation: We can place the rooks in the cells
(0, 0)
,(1, 1)
, and(2, 2)
for a sum of1 + 5 + 9 = 15
.
Example 3:
-
Input:
board = [[1,1,1],[1,1,1],[1,1,1]]
-
Output:
3
-
Explanation: We can place the rooks in the cells
(0, 2)
,(1, 1)
, and(2, 0)
for a sum of1 + 1 + 1 = 3
.
Constraints
3256:
3 <= m == board.length <= 100
3 <= n == board[i].length <= 100
-1e9 <= board[i][j] <= 1e9
3257:
3 <= m == board.length <= 500
3 <= n == board[i].length <= 500
-1e9 <= board[i][j] <= 1e9
Prerequisite Knowledge
- Prefix / Suffix Sum
Example Code
class Solution {
private int[][] findTop3(int[] arr) {
int n = arr.length;
int[][] out = new int[3][2];
PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> b[0] - a[0]);
for (int i = 0; i < n; i++) pq.add(new int[] {arr[i], i});
for (int i = 0; i < 3; i++) out[i] = pq.poll();
return out;
}
public long maximumValueSum(int[][] board) {
int m = board.length;
int n = board[0].length;
int[][] maxPref = new int[m][n];
int[][] maxSuff = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
maxPref[i][j] = Integer.MIN_VALUE;
maxSuff[i][j] = Integer.MIN_VALUE;
}
}
maxPref[0] = board[0];
maxSuff[m-1] = board[m-1];
for (int j = 0; j < n; j++) {
for (int i = 1; i < m; i++) maxPref[i][j] = Math.max(maxPref[i-1][j], board[i][j]);
for (int i = m-2; i >= 0; i--) maxSuff[i][j] = Math.max(maxSuff[i+1][j], board[i][j]);
}
long answer = Long.MIN_VALUE;
for (int i = 1; i < m-1; i++) {
int[][] A = findTop3(maxPref[i-1]);
int[][] B = findTop3(board[i]);
int[][] C = findTop3(maxSuff[i+1]);
for (int[] a : A) {
for (int[] b : B) {
for (int[] c : C) {
if (a[1] != b[1] && b[1] != c[1] && c[1] != a[1]) {
long sum = 1L * a[0] + 1L * b[0] + 1L * c[0];
answer = Math.max(answer, sum);
}
}
}
}
}
return answer;
}
}
Complexity Analysis
- Time Complexity: O(m*n)
- Space Complexity: O(m*n)
(Special) Explanation
Sign-off
Congratulations on making it this far! Best of luck in your future competitions!